5 ST ANNUAL FIRST CONFERENCE **EDINBURGH JUNE 16-21**

2019

Improving the Efficiency of Dynamic Malware Analysis with Temporal Syscall Measure

Dr. Chih-Hung Lin

Taiwan Computer Emergency Response Team/ Coordination Center (TWCERT/CC)

Taiwan Network Information Center (TWNIC)

Outline

- Introduction
- Efficiency mechanics for dynamic malware analysis
 - Virtual time controller
 - Information measure for early stopping
 - Resistance to virtual time controller & Information measurement
- Experiment
- Conclusion

Introduction

Malware Analysis

- Static Malware analysis e.g., grep, pattern match
 - To find malicious patterns from given codes
 - Effective in detecting known threats
 - Advanced attacks can easily bypass static method
- Dynamic Malware analysis e.g., sandbox
 - A file is placed in a controlled environment & its behavior patterns are examined when executed
 - Practical way to defeat the code obfuscation attempts
 - Hide the malicious behavior
 - Launching its malicious behavior when certain conditions are met
 - Timer trigger [Dinaburg et al., 2008], Event trigger
 - Execution-stalling loop detection [Kolbitsch et al., 2011]
 - Time consuming (3-5 minutes/file)

31st ANNUAI

1(hr/day) x 24 (hr) x 60 (min/hr) / 3 (min/file) = 480 (files/day) → Inefficient !!

siwcertcc

Common Ways to Improve the Efficiency

- More Computers
 - Use numerous physical machines simultaneously to perform parallel computation
 - More physical space for such enormous machines
 - Costly & needs more resources
- More VMs

31st ANNUA

- Most commonly used method
- Use numerous virtual machines (VMs) simultaneously to perform parallel computation
- Less physical space, resources or cost
- Still takes minutes to analyze a file

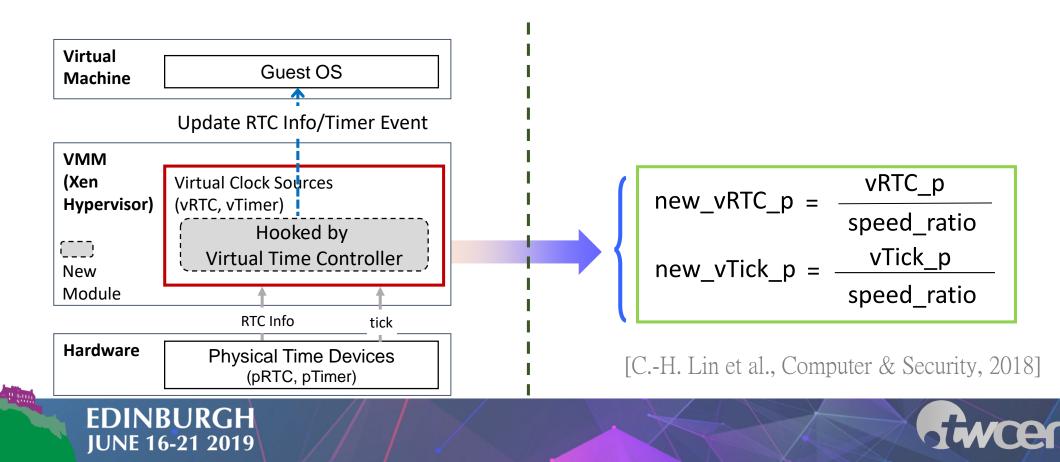
Conventional System Clock Speedup

- Reduction of the latency of dynamic analysis
 - System clock speedup is a feasible solution
- Modify time parameters inside the OS kernel [Kobayashi, 2010]
 - Different OSs need to be separately modified
 - Restricted to OSs, which open their source code (e.g., Linux)
- Adopts time-related API hooking mechanisms for the OS and modify the time parameters [Gray-Donald and Price, 2013]
 - Requires the acquisition in advance of all functions relating to time
 - In cases a function is modified, concealed, or unmodifiable, the system becomes incomplete and its effectiveness is therefore reduced

31ST ANNUA

Efficiency mechanics for dynamic malware analysis

- Virtual time controller (VTC)
- Information measure for early stopping
- Resistance to VTC & Information measurement



Virtual Time Controller

31st ANNUAL

• The VTC hooks virtual clock sources and then alters the period of the virtual RTC (vRTC) and virtual timer (vTimer)

Temporal Syscall Measurement for Early Stopping (1)

• System call vector

31st ANNUAI

 s_i (process ID, name, arguments)

• Shannon entropy $H\left(S
ight)$

FDINRUR

IUNE 16-21 2019

- To measure how diverse the system calls are
- Relative entropy $D(S^t \mid \mid S^{t-1})$
 - To measure how different between the distributions of system calls in this & next moment
 - Small value of relative entropy
 - the lists of system calls and their distributions in this & in the next moments are similar

$$\begin{split} & \text{Information measurement} \\ & H(S) = -\sum_i P(S = s_i) \log P(S = s_i) \\ & D(S^t \parallel S^{t-1}) = \sum P(S^t) \log \frac{P(S^t)}{P(S^{t-1})} \geq 0 \\ & \text{if } P(s_i^{t-1}) \text{=0, then } P(s_i^{t-1}) \text{=0.0001} \end{split}$$

-twoertoo

Temporal Syscall Measurement for Early Stopping (2)

- Terminated
 - While malware complete its execution, the VTC will receive unitary NtClose system calls
 - H ~ D ~ 0
 - Accompany NtClose system calls for continued time slots
 - => Early stopping
- Execution-stalling loop
 - VTC will continue receiving system calls and producing nonzero entropy values
 - H > 0
 - D ~ 0
 - => Increase the speed ratio

FDINBURGH

IUNE 16-21 2019

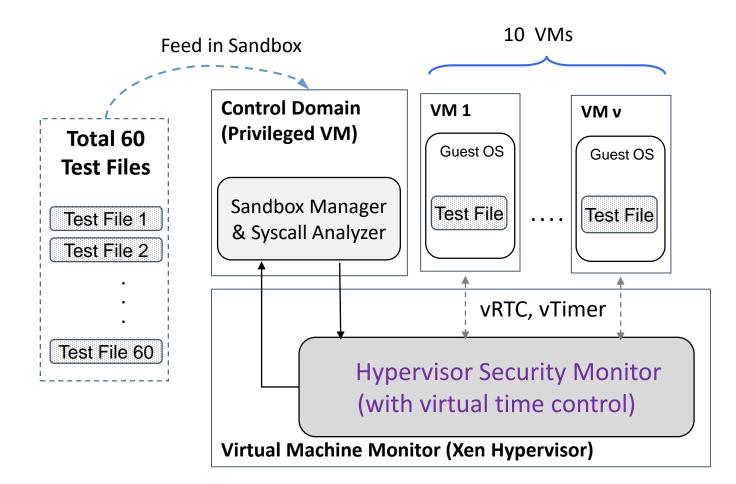
Anti-VTC

- Compare the differences in epochs with various clock sources
 - System clock sources
 - => All time sources in the guest VM are altered
 - Determine the correct time via NTP
 - => Build a fake NTP service in Sandbox
 - No information that malware can use to resist VTC mechanism inside a guest VM
- Escape from the border of the guest VM [Luan, 2016] and then detect the deviation of the clock
 - VTC can be detected by these highly sophisticated malware
 - VTC mechanism will still be effective to deal with less sophisticated malware

1ST ANNUA

Anti-Temporal Syscall Measurement

- Disturb the information measurement
- Malicious adversary may create and release system resources to produce large NtClose system calls
- Frequently creating and releasing system resources will make the malware noisy and easily detectable in the sandbox

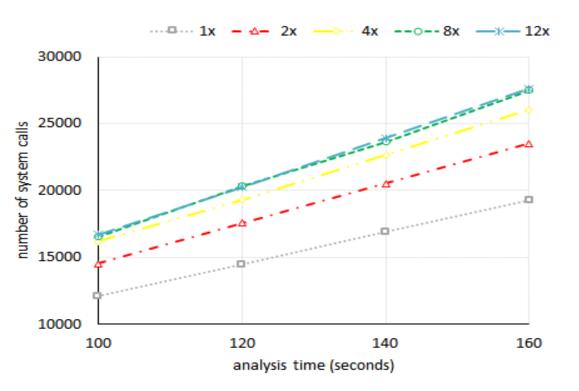


Experiment

Experiment Setup

 The sandbox system had executed the ten VMs in parallel in the VTC environment until all 60 test files were analyzed

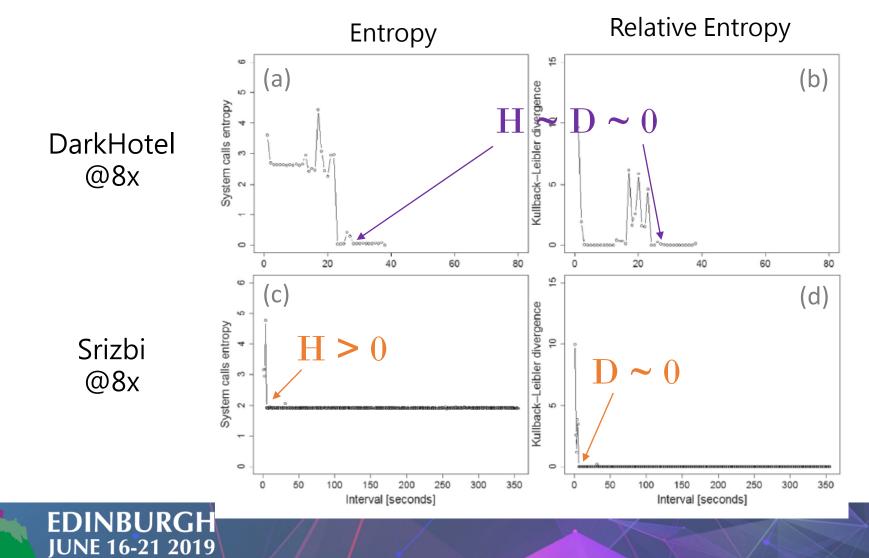
EDINBURGH JUNE 16-21 2019



Effectiveness of VTC

- In a computer system, the longer a program executes, the more system calls can be logged
- More specifically, if we can obtain more system calls in the same period, then the Sandbox is more efficient
- There is a significant positive correlation between speed ratio and the number of system calls
- The number of system calls noticeably increases for time-speed ratio 1x (non-VTC) to 4x, and then increases mildly from 8x to 12x

EDINBURGH IUNE 16-21 2019


31st ANNUAI

Early Stopping Experiment

31st ANNUAL

CONFERENCE

fivertec 16

Conclusion

- We present a sandboxing-based method to reduce the latency of dynamic analysis using virtual time speedup and entropy-based measurement
- cyber security researchers can easily root out potential security problems in minimum analysis time
- To counter sophisticated malware with timing-based evasion technologies, VTC can be combined with existing techniques for further research.

References

- C.-H. Lin, H.-K. Pao, and J.-W. Liao, "Efficient dynamic malware analysis using virtual time control mechanics," *Computers & Security*, vol. 73, pp. 359 373, 2018.
- S. Luan, "Exploit two xen hypervisor vulnerabilities." Blackhat US 2016, 3-4 Aug. 2016.
- A. Dinaburg, P. Royal, M. Sharif, and W. Lee, "Ether: malware analysis via hardware virtualization extensions," in *Proceedings of the 15th ACM conference on Computer and communications security*,pp. 51–62, ACM, 2008.
- C. Kolbitsch, E. Kirda, and C. Kruegel, "The power of procrastination: detection and mitigation of execution-stalling malicious code," in *Proceedings of the 18th ACM conference on Computer and communications security*, pp. 285–296, ACM, 2011.
- Y. Kobayashi, "Linux kernel acceleration for long-term testing," in CELF Embedded Linux Conference Europe, (Cambridge, UK), 27-28 Oct. 2010.
- T. A. Gray-Donald and M. W. Price, "Date and time simulation for time-sensitive applications," Jan. 8 2013. US Patent 8,352,922.

31st ANNUAL

